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1. Statement of scientific work done during the reporting period

The first objective we pursued was to build some test problems in the area of linear and

nonlinear complementarity problems in order to be able to verify the practical value of our algo-

rithms before submitting them to a detailed mathematical analysis. A large variety of problems

of different difficulty belongs to the area of linear and nonlinear complementarity; to start our

investigation we have considered three problems that come from the discretization of variational

inequalities of mathematical physics4 e ppe n The first two problems are linear com-

plementarity problems; the third one is a nonlinear complementarity problem. The corresponding

continuous problems involve ordinary or partial differential operators so that when discretized a

large number (up to a few thousand) independent variables can be considered. For these prob-

lems existence and uniqueness of the solution can be proved; moreover, they have some intrinsic

interest given their- mathematical physics interpretation. A FORTRAN computer code imple-

menting these three complementarity problems has been written.

The complementarity problems considered above have been translated into a system of non-

linear equations -(see-Appetr 2" On the resulting systems of nonlinear equations the algo-

rithm DAFNE9refrjt 2]7" based on the use of ordinary differential equations and the algo-

rithm SIGMA(ref.-t,-5i], 161 based on the use of stochastic differential equations have been

used.

For a system of nonlinear equations with n-independent variables DAFNE solves an n X n

linear system at each step so that with n on the order of one thousand the computational cost of

L. linear algebra is substantial. To avoid this difficulty an inexact-DAFNE algorithm in the

spirit of 171 has been proposed (see AppLndix 4.3) and tested on the test problems with satisfac-

tory results.

At the moment, til pifrrai,,ce & t ofSM ' .'I. :, Lk- -AiLh hundreds oil independent vari-

ables is unsatisfactory.
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2. Research plans for the Irmmediate future

In the immediate future we plan to pursue the following objectives:

(i) carry out a mathematical analysis of the inexact-DAFNE algorithm considered in
Appendix 4.3

(ii) investigate how to adapt the SIGMA algorithm to work on problems involving
thousands of independent variables

(iii) study the behavior of our methods on linear and nonlinear complemnenwaity problems
where existence and uniqueness of solution is not guaranteed.

3. Adminisrtrative actions

The following investigators are working on the contract:

(i) Francesco Zirilli
Dipartimento di Matematica "G. Castelnuovo"
Universiti di Roma "La Sapienza"
00185 Romna (Italy)

(ii) Filippo Aluffi-Pentini
Dipartimento di Matematica
Universiti di Barn
80125 Bari (Italy)

(iii) Valerie Parisi
Dipartimento di Fisica
H Universitit di Roma (Tor Vergata)
00173 Romia (Italy)

During the period September 1, 1986 - December 31, 1986 Francesco Zirilli will be visiting:

Department of Mathematical Sciences
Rice University - P.O. Box 1892
Houston, Texas 77251 (U.SAk)
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4. Appendices

Appendix 4.1. Test Problems

Let Ra be the n-dimensional real euclidean space, let --(xIz2 .... ,z.)TEES, and for

Z,iE]R" let Iz,.) =zrx y-,, be the scalar product between z and if and
i-1

IIz II =(tzz~ the euclidean norm of z.

The first problem considered arises as a one-dimensional free-boundary problem in the lubri-

cation theory of an infinite journal bearing, i.e. a rotating cylinder separated from a bearing sur-

face by a thin film of lubricating fluid ref [8]. The finite-difference approximation used by Cryer

in [8] leads to

Problem A (called Problem 3D by Cryer): Find X, 9 E IR' such that

=0, (4.1.2)

where M -((Mii)) , i,j 1, 2,..., n is an n X n matrix with elements Mi, given by

M = -(H,. )r,  if i + I .

M ,=t (H+%) + (H..*)J, ifj =i, .

Mii -(A_0) if i-1, (4.1.3) '"..

M 0i = 0, otherwise

and .g =(q1, 92' ... ,, 1)T is a vector with elements qi given by I

T H+ -H., 1,2,... (4.1.4)
q' n +I

where

-ilk H n + 1 (4.."

and the function H(y) is given by

Al
U'

V'
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gR(1)- (W -)) a ,  if I < W,

g(I)=0, if I u_ W,
gD(z) = 1'/2-(r- w)(z/2X),

gu(z) = o,
r,, = -z Dp +b6,1 gL(iDy)+6, a gR(j Dy)

+ i(lI=) gz,(; Dz) + b.,(1/l ) gu(; Dz),

The elements q1 , q2 , q..,q of q are given by

qk ri, with k =(j-1)n,+i (4.1.10)

Our last problem, which is defined below, can be interpreted as a finite-difference approxi-

mation of a nonlinear variational inequality.

Problem C: Find 1,.W E]R such that

.V = Mz + pu2,let(z)+ a, i > 0 , I >0 (4.1.15)

K.g -- 0 (4.1.16)

The problem dimension n, the quantities Dz, Dy and the matrix M are defined as in problem B,

given n, n., X, Y. The nonlinear term .z(i) is a vector in R' with components pi ;zi,

i=,....,n. The vector =(q,q 2 ,...,q.) T  is defined by equation (4.1.10) where

r,--DzDysin(27riDz/X),i 1, 2, ... ,, =1,2,...,ny.

F,

I,

'F



Appendix 4.2. The system of nonlinear equations

Problem 1 (Linear complementarity problem). Let M be an n X a real matrix and a£ eR'.

Find igzER' such that 'l

wheretwo>.Q and A > .Q mean that each component of X~ and I~ is greater than or equal to zero.

Problem 2 (Nonlinear complementarity problem). Let f :R' -R' be a given map. Find

z E R' such that

a , 1(Z) Q (4.2.3)

0 0. (4.2.4)

A complementarity problem can be reformulated as a problem of solving a system of non-

linear equations, as follows.

Let 0: R - B a strictly increasing function such that 0(0) =0. As it was shown by Man-

gasarian (ref. 1101), 1 solves the nonlinear complementarity problem (4.2.3), (4.2.4) (Problem 2) if

and only if Z solves the system of nonlinear equations

g.(z) = ( 1f,(z) -;. I)(f.(z)) - e(z,) 0, i 1, 2,..., n, (4.2.5)

where I=(Zl1 3 z 2 ,,..,Z.) T and L = ( 1 1 ,f 2 ,..-.)T.

Problem Ilis a special case of (4.2.5) when .Lz=t+M

% % %
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Appendix 4.3. The inexact-DAFNE algorithm

In the following we choose e(t)-t/2 so that the nonlinear complementarity problem

(Problem 2) is equivalent to

1U) (4.3.1) ',.

where 1(z)-(g (1), 9 )..., g. ())T'E "S and

go'i.) = (fi.) I -fhW - +T) '

-- min(,f(Z)), i n . 4

For the linear complementarity problem (Problem 1), it is enough to choose f ( a)= + Mi.

We note that g() is not everywhere-differentiable; however if Z* is a non-degenerate solu-

tion of the complementarity problem (Problem 2), i.e. such that z° + L(Z") > 0, then, in a neigh-

bourhood of 1', C(z) has at least the same regularity properties of L(Z). Moreover, as shown by

Mangasarian 1101, if all the principal minors of the jacobian of L.(z) are non-singular at XA then

the j cobian of . at I is non-singular.

We consider now the problem of solving the system of simultaneous equations (4.3.1) and

assume that L is regular enough to justify what follows. We define

G() - 1(z) .(,C) - L gZ); (4.3.2)
i-.1

it is easy to see that X * is an isolated solution of (4.3.1) if and only if G ()-0 and IA is an iso-

lated (global) minimizer of G(_).

Incerti, Parisi and Zirilli [1 proposed the following second-order system of ordinary

differential equations t

I~ ~i2A =-#D~z - 4 -VG(r.), (4.3.3) 1

Pd12 dl

where p, f are positive constants, D is an n X n symmetric positive matrix and where VG is the

gradient of G with respect to x. The equations (4.3.3) represent Newton's second law

(masa X acceleration =force) for a particle of mass p moving in R' subject to the force - VG

given by the potential G and to the force -OD - is a dissipa-
dt dt

-I 1-



tive force.

Ift is such that G )(z )-0, z is a (global) minimizer of g(t), and 1(f)-=.1 is a solution

of (4.3.3). Consider the Cauchy data:

dt() zo, - (0) 10, (4.3.4)

and let z(t,.zo,y0) be the solution of the initial value problem (4.3.3), (4.3.4). Then if > 0 under

some mild assumptions on G(z) it can be shown that if IIzo- z II and IIt 0II are small enough

then

lir mIZ(tzo,0)-z 1 0 , (4.3.5)
9-0

so that we try to solve the original problem (4.3.1) by computing the solution Z(t,zo, lo) of (4.3.3)

(4.3.4) for suitable zo, to.

The performance of this method to solve the nonlinear system (4.3.1) is greatly dependent %

on the numerical scheme used to solve (4.3.3), (4.3.4).

Several numerical schemes to solve (4.3.3), (4.3.4) have been considered by Aluffi, Incerti, %

Zirilli 1121, 113] and the simplest linearly implicit A-stable scheme among those proposed by Lam-

bert and Sigurdsson 114] has been chosen. Finally, for the corresponding algorithms to solve the

nonlinear system (4.3.1) Zirilli [1] carriedout a local convergence and rate of convergence

analysis.

Let . ER' , 0(t,jj) be a regular function froi R X R" to IR" and consider the initial

v&a e problem:

d -= (t,j) (4.3.6)

dt

=0) 10 (4.3.7)

The class of the linear k-step finite-differences schemes with variable matrix coefficients intro-

duced by Lambert and Sigurdsson 114] to solve (4.3.6), (4.3.7) is given by the formula:

k k 0 -1

iI S.,j-
,, (aJ°)I±+ h'aJ )iu.-+i = Az (6 1+ A)'/r Q[)&.'+, (4.3.8)

y--0 =l i-0 rN

I--*P~-~wa --,a~ %- = - - -~V~'~~ N -.. ,*- '
... I
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where h > 0 is the time integration step-length, A,.-ih, , Moreover Q, is an m X m

matrix such that, for all i, I I Q < 11 q - constant and a)I+ h'a(')Q is non-singular. We

note that when

a 0') 0, r = 1,2,...,s, i 0, 1 k...,k

and

b -0, r = 1, 2,...,. -1, ]-0,1 ... ,k

the class (4.3.8) reduces to the class of linear k-step methods with scalar coefficients.

Some of the methods contained in (4.3.8) are A-stable in the sense of Dahlquist and linearly
I

implicit; that is, to compute a step only i linear system must be solved. The simplest method

with these properties is given by the formula

(I- +- ) h h., (4.3.9) -

where -; - (tiX) is the jacobian of 0 with respect to X.

After rewriting (4.3.3) as a first order system:

dz
(4.3.10)

dt p p

i-I

formula (4.3.9) with variable time-integration step-length Ai (i.e. hi = , i 1, 2,..., to =0) is
i-o

applied to compute the trajectory of (4.3.3), (4.3.4).

In (4.3.10) the map is given by

v
:l | " - I (4.3.11) ,..sJ.

so that its jacobian 4 is given by

(4.3.12)L Lz '6 DI
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where

L(x) - 2jJ T (a)J(z)+ g,(Zl)Hi(z:)], (4.3.13)

J(z)-- . is the jacobian of g with respect to x and H(z) i the hessian of g(z).az

We consider here the algorithm implemented in the DAFNE package (Alufi-Pentini, Parisi,

Zirilli, [2], [3]). Let

4. Z,+1-., i =0,1,2, (4.3.14)

Applying (4.3.9) to (4.3.10) we obtain after some simple algebra

h,

7- = 0,1,2, • (4.3.15)

where L = L( 1L), V Gj-=-VG(Z.). With respect to I the iteration (4.3.14) (4.3.15) as it stands

depends on "first-order information" (i.e. J(.) the jacobian of g) and on "second-order informa-

tion" (i.-. the second derivatives of I contained in L(..)). Since we are interested in solving the

nonlinear system (4.3.1) the need of second-order information with respect to a is a serious handi-

cap of the methods based on (4.3.15) when compared to Newton or Quasi-Newton methods. To

avoid this inconvenience, L(j) in (4.3.15) has been substituted with

L (z) - 2 Jr(z) J(x) (4.3.16)

We note that the term g(Z)H,(,t) that we have dropped in substituting L to L is zero at the
i-i1

solutions t' of (4.3.1). Iteration (4.3.15) is therefore replaced by

Z+ 0,(4.3.17)

where

A,. + .Ih+,S D),

ft.

%%% • '% %% ". . -. .. ,. ,% . %.% %,,-. .- %..* •." ".-€-,.......-..-.-.o.......- ........... ....... .

.-.'.P~'.' _ '-t.. -.d: '",'" - ." 
%
,%-%.".' "." .. '.'.' '. -".". ""%""'' '" "%".'- .h"i" "-" h.i.'

r' d l ll lllb llll lI lll l . . . i " - " "" " "," " d ' --" h ' ' "



. -' + -- , (4.3.1 )

with L ,==L (L).
I

Since A, is an n X n symmetric and positive-definite matrix the linear system in (4.3.17) can

be solved by the conjugate-gradients (C.G.) method introduced by Fletcher and Reeves [15]. This

procedure solves an n X n linear system in at most n steps. However, since we plan to apply the

present method to large problems (n - 1000), in order to save computational effort we solve the

linear system in (4.3.17) only in an inexact way, by stopping the C.G. procedure after a number

of steps which is usually considerably lower than n; this is performed by means of the following

stopping criterion. Let 8.(k) be the (approximate) value for the solution .. of the linear system in

(4.3.17) obtained as the result of step k of the C.G. procedure. The iteration is stopped after step

m if

IIi, .i~-b.I~2 < 2.IL.II2  (4.3.19)

where ri" is a given relative error tolerance for the basic step (4.3.17) such that lim ii =0.
i 00

We note that if . is converging to a so' tion of (4.3.1) we have lim lik- IJ =0. Similar
i C

ideas have been introduced for Newton method by Dembo, Eisenstat, and Steihaug [7]. Finally

we observe that when hi - oo the step (4.3.17) degenerates into the Newton step for the nonlinear V

system (4.3.11), so that under suitable assumptions on .g(,), A, and q., local and superlinear con-

vergence can be proved for the algorithm.

A complete mathematical analysis of this algorithm will be carried out later. %

,%
PAL e'.e '. .4
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1. Statement of scientific work done during the reporting period

A class of algorithms derived from the ones used in the packa-

ge DAFNE and based on the numerical integration of a Cauchy problem

for a system of ordinary differential equations inspired by classic

al mechanics has been eveloped. These algorithms require the solu-

tion of an N x N linear system of equations at each step, the cost

of solving this linear system when a large number of unknowns N is

involved is the most important part of the computation. The linear

system is solved by an iterative procedure (i.e. conjugate gra-

dients) and only an approximate solution is computed (i.e. the co-

njugate gradient procedure is stopped after a number m of steps

depending on the norm cf the residual, 0 < m < N). For these algo-

rithms local convergence and Q-superlinear rate of convergence has

been proved. The algorithms have been used to solve three comple-

mentarity problems derived from variational inequalities of mathe-

matical physics very successfully. The complementarity problems

considered had up to 900 variables. The results previously describ-

ed are contained in section 4.

)I-
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2. Research plans for the immediate future

In the immediate future we plan to pursue the following objec-

tives:

(i) investigate how to adapt the SIGMA algorithm to work on pro-

blems involving thousands of independent variables

(ii) study the behavior of our methods on linear and nonlinear co
plementarity problems where existence and uniqueness of solu-
tion is not guaranteed

(Iii) study the Karmarkar algorithm for linear programming as a con

tinuatiQn method involving the solution of a Cauchy problem

for an ordinary differential equation.

3. Administrative actions

The following investigators are working on the contract:

(i) Francesco Zirilli

Dipartimento di Matematica "G. Castelnuovo"

Universita di Roma "La Sapienza"

00185 Roma (Italy)

(ii) Filippo Aluffi-Pentini

Dipartimento di Matematica
Universita di Bari

80125 Bari (Italy)

(iii) Valerio Parisi
Dipartimento di Fisica

II UniversitA di Roma (Tor Vergata)

00173 Roma (Italy)

During the period September 1, 1986 - December 31, 1986 Francesco

Zirilli has been visiting:

Department of Mathematical Sciences

Rice University - P.O. Box 1892
Houston, Texas 77251 (U.S.A.)
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1. Introduction

Let JRN be the N-dimensional real euclidean space, let

x= ( x,x 2 ,...,xN)
T ER N be a vector, and for x,y E RN let

N I
<xy> xY, Ixi = <x,x> be the euclidean scalar

product ania norm; when necessary f" will indicate also the

matrix norm induced by the euclidean vector norm. Given

f ; JR N_ JR we will be concerned with two classes of problems

in this paper: the problem of solving the system of simulta-

neous nonlinear equations

(1.1) f(x) = 0

that is:: find x- E N such that f(x*) 0, and the complemen-

tarity problem

(1.2) x > 0

(1.3) f(x) > 0

(1.4) <x,f(x)> = 0

where x > 0 means x > 0, i=1,2,...,N,and similarly f(x) > 0

means f.(x) > 0, i=1,2,...,N, f.(x) being the components of

f, that is: find x'-" such that: x* > 0, f(x-') > 0, <x' 'f (x)>=0.

The importance of the problem of solving a system of

simultaneous equations is well known. When f(x)=Ax+b is an

affine map the (linear) complementarity problem has been con

sidered by Cottle and Dantzig in [1] and contains as special

le J
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cases the linear programming and the quadratic programming w

problem. In the case when f(x) is a possibly nonlinear func-

tion of x the (nonlinear) complementarity problem is a ra-

ther general problem and contains as special cases the

Kuhn-Tucker first-order necessary conditions for the non-

linear programming problem and has been widely studied; see

for example Gould and Tolle [2].

The linear and nonlinear complementarity problems have

applications in such diverse areas of flow in porous media

[3], image reconstruction 14], [5], game theory [6].

In this paper we will be concerned with the problem of

the numerical solution of nonlinear systems of equations and

complementarity problems. Usually complementarity problems

are approached numerically with pivotal methods (for example

the simplex method for linear programming). The pivotal

methods are usually of the "step by step" improvement type,

that is given a problem for which a solution is sought the

standard approach is to attempt to define recursively a se-

quence of approximate solutions which have the basic proper-

ty of making an improvement in a suitable "objective func-

tion". When the problem satisfies some convexity and/or mono-

tonicity assumptions the pivotal methods are guaranteed to

converge and if only a moderate number of independent varia-

ble is involved (up to few hundreds) their numerical perfor-

mance is satisfactory. e-

In recent years there has been a growing interest in

the use of continuous methods in nonlinear optimization; see

N.



for example Allgover and Georg [7] for a review of simpli-

cial methods in the computation of fixed points and the solu

tion of nonlinear equations, and Bayer and Lagarias [8] for

the interpretation of Karmarkar's linear programming algo-

rithm as a method that follows a trajectory of a suitable

system of ordinary differential equations. In particular the present

authors have developed a method for solving systems of non

linear equations based on the numerical integration of an

initial-value problem for a system of ordinary differential

equations inspired by classical mechanics [91, [101, [ii],

[12] and a method for global optimization based on the nume-

rical integration of an initial value problem for a system

of stochastic differential equations inspired by quantum

mechanics [131, [141, [15]. In section 2 the algorithms in-

troduced in [101 to solve systems of nonlinear equations are

modified to allow for an "inexact" solution of the linear

systems appearing in each iterations in the spirit of Dembo,

Eisenstat and Steihaug [16]. These new algorithms are parti-

cularly effective for problems involving a large number of

independent variables where the computational cost is domi-

nated by the solution of the linear system at each step. Un-

der suitable hypotheses local convergence and Q-superlinear

convergence of these new "inexact"' algorithm for nonlinear

systems of equations is proved. In section 3 the complemen-

tarity problem is transformed into a nonlinear system of

equations following Mangasarian [17] and the algorithms pre-

viously developed provide a class of locally convergent

v,*
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Q-superlinear methods for the solution of complementarity

problems. These methods are based on the idea of following

a trajectory of a suitable system of differential equations

inspired by classical mechanics and are not of the "step by

step" improvement type. Finally in section 4 some numerical

experience obtained with the algorithms of section 2 and 3

on some complementarity problems of mathematical physics is

shown.

Some of the results of this paper have been announced

in [18].

-F
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b
2. Some inexact algorithms for nonlinear systems of equa-

tions

T N

Let f(x) = (fl(X) (x),. .. ,f (x))T ER N , where f.(x),
1 2- N- (

i=1, 2,... ,N, are real-valued regular functions defined for

T N
x =(x x2 .,xN)TN ) E]'R

In order to solve the system of simultaneous equation

(2.1) f(x) 0

we define

T N 2
(2.2) F(x) f (x) f(x)= f (x).

It is easy to see that x ' is an isolated solution of

(2.1) if and only if x -- is an isolated minimizer of F(x) and

F(x*) = 0.

In [91, (10], [11], [12] the idea has been proposed and

developed of :associating to the nonlinear system (2.1) the

following system of second-order ordinary Gbfferential equa-

tions:

2
dx dx

(2.3) i- (t) -gD - (t) - VF(x(t)) t E [0,+-)
t2  dtdt t

where D is a NxN positive symmetric matrix, u, g

are positive constants, VF(x) is the gradient of the function

F(x) with respect to x. The equation (2.3) represents New-

A. %
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ton's second law (mass x acceleration = force) for a parti-

N
cle of mass p moving in JR subject to the force -VF given

dx
by the potential F and to the dissipative 

force -g D dt

If x* is an isolated minimizer of F(x) then x(t) = xi'

Vt E [0,+-) is a solution of (2.3); consider the Cauchy data:

(2.4) x(O) = -O

(2.5) dx

- (0) =
dt -o

and let x(t, ,n) be the solution of the Cauchy problem

-0O

(2.3), (2.4), (2.5).

2N2N
Itt can be shown that there exists a neighborhood U E]R2

of EIR such that if E U we have:

_ao

(2.6) lim IIx(t, 0 n 'o)-x = 0.
t 0 G

Hence in order the solve the system of nonlinear simultaneous equa

tions by integrating numerically the Cauchy problem (2.3),

(2.4), (2.5), we are primarily interested in the equilibrium

points reached asymptotically by the trajectories of (2.3)

(hopefully solutions of (2.1)) instead than in the accuracy

of the numerical scheme. So that of particular interest are

numerical methods enjoying a special stability property cal-

led A-stability [10].

%.%
% %5
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Let t EIR, let e m and E(t,)E IRm be a given function

continuous in t and continuously differentiable with respect

to y, such that the initial-value problem:

(2.7) dy

d-t (t) = (t,y) t E (o,+,)

(2.8) y(O) =
-O

has a solution y(t, o ) for tE[O,+-).

The simplest choice of A-stable linearly implicit me-

thod to integrate numerically (2.7), (2.8) is:

(2.9) (I-ho_ )(Y 1 -yn ) h n=0,1,2,...

( 2.10 ) o= o".

where y is the numerically computed approximation of
r

y(nh, c0 ), I is the identity matrix acting on ]Rm , h > 0 is the
stepsize, for n=O,1,2,... t =nh, = (t ,n), * = D(t nyn)

n -n nn n nn

where o (t,y) - is the jacobian of * with respect to y.

We note that wherI o(t,y) = Ay is a linear map (2.9) reduces

to the backward Euler method.

After rewriting (2.3) as a first-order system

d"x

(2.11) dx = v

I.



(2. 12) dv D- VFx

dt - I -

formulae (2.9), (2 .101 with variable stepsize h ,pn=0,1,....
n- n

(i.e. to = 0, t n= Z h., n=1,2,.... are applied to (2.11),

(2.12), (2.4), (2.5 . Inlthis case the map 0 : R 2N JR2

will be given by

(2.1) :L~r[v Dv - VF(x)l

so that its jacobian matrix is given by

(2.14) O(x)= Lx) D

where

T N
(2.15) L(x) =2[J (x)J(x) + ' f.(x)H.(x)]

af(x)

axx is the jacobian of f with respect to x and H.(x)

is the hessian of f .(x).

Let s n= x -+Ixn n=0,1,2....;after some simple algebra

(2.9) becomes:
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(2.16) [L :+ 2~ I +gD)] S = F.
n h h _n n h-n

n n n

S

(2.17) v n
-n+l h nC ,,.

(2.18) x n = x n+ sn

where L L x ),, VF =VF(x ).In order to avoid the compu-

tation of H.(x), i=1,2,...,N,at each iteration and since we

a~e looking for points x* such that f(x*) = 0 the term

f f.(x) H.(x) in (2.15) is dropped so that L(x) is substi-

tuted with

T
(2.20)., L(x) =2 J (x)J(x).

Equation (2.16) will be replaced with

(2.21) A~s =b

nn -n

where-

(2.22) A(x,h) L(x) + I- D

and

(2.23) A~ A(x h)

N NP
-A P_2kLI
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(2.24) b -VF + - v
-n n h -n

n

we note that the matrix A is symmetric and positive defi-n

nite.

We have the following theorem:
N _RNTheorem 2.1: Let f : + JR be twice continuously differen-

tiable, F(x) = f T(x) f(x) and L(x) be given by (2.15). Let

x* E]RN be such that f(x-,) = 0, J(x*) is nonsingular (i.e.

x* is a nondegenerate solution of the system (2.1)) and the

following Lipschitz condition holds:

(2.25) [IL(x) - L(x*)lI < Y IIx-x <I

Vx E s = {xJ Ix-x*- < a}

for some constants Y and a greater than zero. In the itera-

tion (2.21), (2.17), (2.18) let {h n,n=0,1,2,...,be a sequen-

ce of positive numbers such that

(2.26) lim h =
n

then there exists h >0 such that for h > hn=0,1, ... , X. is
n

a point of attraction of (2.21), (2.17), (2.18) and the rate

of convergence is

(i) Q-superlinear if h - )II 0, n> n for some
n -- F (x-n J1 y 0 n>no.,f r s m>1,n 0 >

'Se,0

" "- "-"-"-."v ,- .'. -" ." v ." ." ." ,'-"'" ." " •"-- v - v .'- -. -. -... "-."-."..'.." ." ." ." ;- % v.% . % .4.. .. ',.% 'S



-1 2
(ii) Q-quadratic if h- < Y2 VF(x )I 'Y > 0, n > n ,for

some Y,)n > 0

Proof: Let us rewrite (2.21), (2.17), (2.18) as

(2.27) x = G(x ,h) + hhn A- A (x -x) n=0,1,2,....
-n+1 n- n hh n -nn1

where

(2.28) G(x,h) = x - A(x,h) -1VF(x)

with the initial conditions xO = .O x o-hor , that is

(2.21), (2.17), (2.18) can be interpreted as a two-step ite-

ration. Since x* is a nondegenerate solution of the system

(2.1) x* is an isolated minimizer of F(Y) and VF(x-) 0.

Moreover for h > 0 the symmetric matrix A(x,h) is positive

definite so that A(x,h) exists that is G(x,h) is well defLi

ned for xCG]R Nand h > 0 and x* is a fixed point of G(x,h).
-11 -1thnteexisLet B3 = H]L(x*)_ 11 and let EE(O,'B )te heeeit

6 >0 and k >0 such that:

(2.29) IIL(x*,) - A(x,h)Il < c VxES { x( Ujx-x*If 61

Vh >h

In fact

IIL(x*') -A(x,h )j <I __IL(2i) (x)11I IIL(x)-A(x,h) II

11 41, 
.
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since L(x*) =L(x*) there exists ~5such that:

JIL(x*) -L(x)I11 < yx C-S

and for a suitable R >0

(2.30) IIL(x)-A(x,h)I 11 11I I+gD11 < 4~Vh >
h h 2

From (2.29) and the perturbation lemma (lemma 2.3.2 pag. 45

of Ortega and Rheiriboldt [19]) it follows that A(x,h) 1

satisfies

(2.31) 11 A(x,h) -1 1 < a =yx 6 S, Yh >

Moreover

(2.32) IIG(x,li)-x*II< w(x,h)IJjx-x*II Vx CSS, h>h

Ii.

whcr c

(2.33) W(x~h) =a II~,h-~)1+JLx-Lx)11lqx 1

and

0 X~x
q(x) =p

lIV F(x)-~VF(x*)-L(x*)(x-x*fl

1IIx-x*I11
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In fact

1 S

II (x, h) -x" 1=I A(x, h)-l A(x, h) (x-x*) -V F (x) I

+Lia{ fllA(x,h)-L(x)Il+lln(x)-L(x*)IIl] Il_-x*i +e

+IL(x )(x- l*)+VF(x)- VF(x) II}•

Moreover from (2.25) and proposition 3.2.5 pag. 70 of [1.9]

we have

(2.34) Ilq(x)ll < ai II x - x*II VxES

Hence from (2.30), (2.25) and (2.34) for some constants

a2 , >0 we have

(2.35) w(x,h) < a +" a _ >

2 h '3-

From (2.27), (2.31), (2.32) for ,x E S and h >h we have r
-n-n- n1

(2.36) lix -x*l1<l1G(x ,h )-x* + h h A-l[(x -x)+(x*-x 'n 1 I
n n-i

<[w(x ,h )+-__ - ] lIx -xll+ llx -x* l l).
- n h h n - h n-1

n n-1 n n-1

< (a 6ia 2 1*,+ pa-*

Los W"

-- [3 + 2 h -2 -ln-XI -'. _ -n- - :

"I l ,' a, ] ¥~l 'l almur,,,u~I~hl [luH " Il h h
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lp.

Moreover from (2.35) eventually changing the values of

a and hwe have

a
Y a 6+ -=2 + ia 1
3 3 h -2 2 -

(2.37)

Ila< 1
4 -2 2

so that

(2.38) 1i IX x*ll<y lix ~x"lV l +YI x -x* 11
-n3 -n- 4 -n-1

with a 4 = y 3 + Y4 < 1 that is x e1C S. In particular we

have shown that

(2.39) lrn x x
-n -

that is x* is a point of attraction of (2.27).

In particular for n > no>O0, x C-S, using (2.35) the re-
0 -n

quired order of convergence estimates follow from:

(2.40) lix -i [a +1lx_-xli] lix -xii+ lia x-x 11
n--i- <2h _i - - n-1 -n-i

for n> n > 0
0



15.

and the fact that

(2.41) II F(x )ll<(IIL(x*)l+ )llxn-x*ll
n - -n n--

where lim £ = 0.
nn -.

Using the method given by (2.21), (2.17), (2.18) requi-

res the solution of the linear system (2.21) at each step.

Computing the exact solution with a direct method such as

Gaussian elimination is very expensive when a large number

of unknowns is involved and may not be worthwhile when xk is

far from x*. In this case it seems natural to solve the li-

near system (2.21) by an iterative procedure and to accept

an approximate solution. In particular since the matrix

A is symmetric and positive definite we may use conjugaten

gradients. When then method given by (2.21), (2.17), (2.18)

is used solving (2.21) with an iterative procedure and accep

ting an approximate solution we will describe this procedure

as an inexact method.

Let A be the approximate step computed by the iterati--n

ve procedure when solving (2.21) and

(2.42) r =A - b-n n-n -n p

be the residual. When r n 0 the linear system is solved-n -.

exactly and A = s n Let us assume that the approximate
-n-n

step computed A satisfies the following condition:

VVI..
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(2.43) 1ur n < B lb 1I n = 0,1,...

for some forcing sequence {BS }n n=0,l,...
n

We have the following theorem:
N N

Theorem 2.2: Let f: JR -JR be twice continously differentia
T N

ble, F(x) = f (x) f(x) and L(x) be given by (2.15). Let x*E]R

be such that f(x-) = 0, J(x-) is nonsingular and the follow-

ing Lipschitz condition holds:

(2.44) fL(x)-L(x)II<y Ix- x*I Vxe S= { xl x-xl < }

for some constants Y, 6 greater than zero. In the itera-

tion (2.21), (2.17), (2.18) let {hn }, n=O,1,2,..., be a se-

quence of positive numbers and let the linear system (2.21)

be solved approximately in such a way that the residual r n

given by (2.42) satisfy the condition (2.43) for some forc-

ing sequence {B }, n=0,1,.... If 0 <B < B < 1,
n n - max

n=0,1,...,th(.n there exists h> 0 such that if h > h, n=01,...,

then x* is a point of attraction of the inexact method (2.21),

(2.17), (2.18).
T

Proof: Since J(x*) is nonsingular and L(x*) =2J (x)J(x*)

we define the following norm:

(2.45) xlxiK = IIL(x)lf VxE RN

we have

d~.
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(2.46) 1 lxlI < lxII,, < lxll VxE RN '
where

(2.47) P= max {lL(x-)jj,IJL(x*) lII}.

Moreover it is easy to see that -under the stated hypothesis

for any e > 0 there exists 6 > 0 and h > 0 such that:

(2.48) IIA(x,h)-L(x-)Il < E VxES={x lIlx-x*11<6}, h >h

(2.50) IVF'(x)-VF(x-':)-L(x--) (x-x*;) 11<Ellx-x*: 11
--

Vx rS x I xl -xll <  6
i.. w.

, p¢

We have

(2.51) L (x*-) ( n -x*-)=[I+L(x-) (A- L (x,), ] .

- n -n - _n - -

and taking norms:

(2.52) ~ ~ ~ ~ x <I~ 1x ,,[ +lL (x'-") IA '- x; - l]
+ 1 - "- - n --

(2. 52) xIl[+1 L(x* A~~* I .

• r n I I + H I A 1 x* +1-b -VF(x' )-L(x"' -x*) II]

-- ==i S S.S S. -i - i - il 
'

i " - i ' |S - - °



18.

from (2.24) if ic ES and h n>h using (2.48), (2.49), (2.50)

we have:

(2.53) Jnl~*I ~<'~1]BIJVF(ic )jj+cjjj -xjjI+
n -n -n

Lii -cX4, + 1+'

n n-i n n- --n-i

moreover from

(2.54) VF (i ) L (x*) (j -x*) + [V F (i -V7F(x* )L(x-*)(ic -x-)]n - -n- -n -n-

we have

(2.55) JJVF(ic )JJ<JJic -X* + c -x*J
-n - n--

Finally from (2.47), (2.53), (2.55) we have:

(2.56) <In1~I ~I+IIL [Bma(+± )+L E 2~~

-n1 -2 max -n- -

5 -n 0' 6 -n-I1-x.

where
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(2.57) a [1+Ci ][5 (1+E:l )+E E (+-P--)]5 1 max 1 2 ,

ax C) (i( e 1+3 ) V /h16= max 1

choosing the values of e and h so that a +a 6< 1 from (2.56)

we have that if 5n ES then x E S and %
-n -n-i -n+1

I im R =* %

n

N N
Theorem 2.3: Let f: JR . JR be twice continously differen-

tiable, F(x) = f T(x) f(x) and L(x) be given by (2.15). Let
N

x* E R be such that f(x"-*) 0, J(x- ) is nonsingular and the

following Lipschitz condition holds: p
,.5,

(2.58) jL(x)-L(x'*) J<y x-x* 11 Vx S={xI Ijx-x' < 61}

In the iteration (2.21), (2.17), (2.18) let {h }, n=0,1, ... ,
n

be a sequence of positive numbers and let the linear system

(2.21) be solved approximately in such a way that residual

r given by (2.42) satisfy the condition (2.43) for some S
-n
forcing sequence ff },n=0,1,..., such that 0< B^ <f <I $

n n max
n=0,1,.... Then there exists h such that if h > h, n=O,1....,

n
x'L is a point of attraction of the inexact method (2.21), S

(2.17), (2.18) and the rate of convergence is:

NN
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() Q-superlinear if h 1  < I HVF(.4 )11, Y >0, n >n

for some Y 1 f> 0 and lrn B 0
n - w

(ii) Q-quadratic if h < Y IIF I > 0, n> n
n - 2 -n ''2 '0

and B n< Y 2IIVF(i_ n)I1 n> n 0for some Y 2 ) n0> 0.

Proof: From Theorem 2.2 we have that x* is a point of attrac

tion of the inexact method (2.21), (2.17), (2.18) so that

-. we can assume that lrn xc = x,, and it remains to prove
5n -n =

the rate-of-convergence results

We have:

(2.59) R -x 4 A I r +[A -L(x*)](i -x*)-[-b VF(x*)-
n-s-- n -n - -n n

L x* (c n ") ,

and taking norms

(2.60) Iii -x* II < I A- 1t H( r 11+1[A ~L(x*t') III I R x*lIlI+
n- i n n n -

+ 11 F(ic n~Fx)~* n(i h* nl l -1ix n-x nII

Let ,6, be chosen in Such a way that (2.29), (2.34), (2.35)

hold then there exists n' such that for n>n n+1, an E S = (x
0 0 -n -

Wxx*I< 6 we have:

(2.61) H < a { r nIVF(i )11+(c, -L +a-H[ -x)-n- -n 2h

-- hh n - nn- + 
--nn-n-i

.5' n

..5o o--n --5. 55
... 5x-x: ::S.A '\/ [ < %} we' h~ave: %\ ~%* 5
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and the desired rate-of-convergence results follow from

(2.41).

.4-
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3. Complementarity problems and nonlinear systems

N NLet f : JR -, JR be given, the complementarity problem

associate with f is

(3.1) x > o
(3.2) f(x) > 0

(3.3) < x,f(x)> 0

*and let e :]R -JR be a strictly, increasing function such that

e (0) = 0. In [ 17J Mangasarian has shown that x EF R N is a so

lution of the complementarity problem (3.1), (3.2), (3.3)

if and only if x* is a solution of the system of nonlinear

equations

(3-4) g(x) =0

where g(x) =(gr (x),g (x),...,g (x)) Tand
~1 2 N-

(3.5) g.()=eI.x-.I-ii)-~.

for later purposes let us introduce

(3.6) G(xE) =,(X)T -EX



23.

,,

Definition 3.1: Let x* eRN be a solution of the complemen-

tarity problem (3.1), (3.2), (3.3) we will say that x* is

nondegenerate if x* + f(x*)> 0.

Definition 3.2: Let f be continuously differentiable and

J(x) be the jacobian of f with respect to x, if for
_ af.

n= 1,2,...,N the principal minor ((--.)),ijj=l,2,...,n is

nonsingular we say that (J(x) has nonsingular principal mi-

nors.

In [17] Mangasarian has shown that if x- is a nondege-
I

nerate solution of the complementarity problem (3.1), (3.2),

(3.3) such that J(x*) has nonsingular principal minors and

e: ]R -IR is a stricty increasing differentiable function such

de dG
that - (0) + ! (t) > 0 Vt > 0 then x' is a solution of the

nonlinear system (3.4) and (x*) the jacobian of & with

respect x is nonsingular.

For simplicity we choose e(t) = so that in a neighbor
* 2
hood of a nondegenerate solution of the complementarity pro-

blem (3.1), (3.2), (3.3) the function R(x) given by (3.5)

has the same regularity properties of f(x). Given the local

character of the convergence theorems of section 2 this is .

satisfactory. In section 4 the method for solving nonlinear

system described in section 2 will be applied to (3.4) with
te(t) = for some test complementarity problems.

2-
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I
4. Numerical experience

The inexact method (2.21), (2.17), (2.18) has been im-

plemented as follows:

(i) since A is symmetric and positive definite the linear
n

system (2.21) has been solved by the conjugate gradient

method (C.G.) introduced by Fletcher and Reeves (20].

This procedure solves an N x N linear system in at most

N steps. Hovewer we stop the conjugate gradient proce-

dure after a number of steps which is usually conside-

rably lower than N. In fact let s be the approximate
ranl

value for the solution s of the linear system (2.21)
-n

obtained as the result of step k of the conjugate gra-

dient procedure. The conjugate gradient iteration is I

stopped after step m if

11A s - b 1I <  B 1lb 11n-n -n - n

ii) we have chosen:

S= n = 0

D = I (the identy matrix)
() = 0 n=0,1,...
-n

and the following very simple variation laws for the

N"S.
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time integration step-length hn and the forcing sequen-I

nn

h = min (10h n,hmax n=0,1,2,....

with h =1, h _= 103
o max

n1 n B n=0,1,2, ...n+l n

where B is given and & is automatically chosen by the
0 n

program among the two values 0.1 and 0.5.

iii) the program stops in any case the conjugate-gradients -:

iteration after N steps in order to avoid possible non

termination due to the finite arithmetic of the compu-

ter. -

Finally the method given by (2.21), (2.17), (2.18)
(-.

(i.e. exact solution of the linear system (2.21)) is obtain-

ed simply setting B = 0.
0-1

The stopping rule adopted is G(n ) < 10 for the ine--n -

xact method and G(x ) < 10 for the "exact" method (i.e.
-n

B 0). These methods have been coded in the Pascal program
0

ming language and the program has been run on a Hewlett-Pac- 
o.

kard 9816 computer.

We have tested the proposed algorithm on three comple- S

mentarity problems of which two are linear and one is non-

linear.

The first problem considered arises as a one-dimensio-

I-

N P ~ -~ w'.'v ~ .~'~pp J
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I
nal free-boundary problem in the lubrication theory of an

infinite journal bearing, i.e. a rotating cylinder separated

from a bearing surface by a thin film of lubricating fluid

[211. The finite-difference approximation used by Cryer

in [21] leads to

Problem A (called Problem 3D by Cryer): Find x, wEIR such

that

(4.1) w,: q + Mx, w > 0, x > 0,

(4.2) "< w ,x> = O,

where M = ((M. .)), i,j=1,2,...,N is an N x N matrix with ele

ments Mi. given by _

(4.3) M.. =-(H. ) 3 if j; =

Mi. = [(H. L) + (H._)3], if j = i,

Mij = - if j = i-I,

IjI

Tand _= (ql,q2,...,q N  is a vector with elements qi given by

(4.4) q [H Hi
1 N + 1 1 +2
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where

T(4.5) H.+ = H((i+) +

and the function H(y) is given by

1 x

(4.6) H(y) - (1+ ecos iy) > 0

with

(4.7) T =2, =.8

We note that the matrix M given by (4.3) is symmetric and

positive-definite.

The second problem arises as a two-dimensional free-

boundary problem in the theory of the steady-state fluid

flow through porous media. Some of these problems can be

formulated as a variational inequality after an ingenious

transformation proposed by Baiocchi and others (ref. [3 ]).

The discretization used on the "model problem""([31, p. 4)

leads to

A"

N
Problem B: Find x, w E]R such that

(4.8) w = + Mx, w > 0, x> 0,

(4.9) <w,x>-= 0

S<. 'S

.' ~ * S. .• ''j11- ,- *5 " , - -5 -" ",","5"-"-." * - . "•",", z , """",".""", -" ",",''. .S..",..v, ". .. ""'.' .
' '

'"" ,"." -,' .'-'-' ' ,
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I

where M, an N x N real matrix, and _ 
= E ,R. N

are defined below.

Given n ,n (positive integers) and X, Y (positive real
x y

numbers), let

Nn
N~nn, .1'

x y

Dx = X/(n +i),x

Dy = Y/(n +1)
y

a Dy/Dx,

let A be the n x n tridiagonal matrix having all the main
x x

diagonal elements equal to 2(a+I/a), and the paradiagonal

elements (i.e. immediately above or below the main diagonal)

equal to -a, and let B be the n- x n diagonal matrix with
x x

diagonal elements equal to -1/a. The matrix M is an n x n

matrix with a block-tridiagonal structure (n x n blocks),

having each main-diagonal block equal to the matrix A, and

each paradiagonal block equal to the matrix B. We note that

M is a positive-definite symmetric matrix. The vector q is

defined as follows. Given W(O < W< Y), and using the Kronec-

ker symbol &.., let

2 '
g L(y ) = (y-y)2 ,

(y) = (W-y) 2 , if y< W, e

R ( 0i
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9(x) =Y 2/2-(Y 2 _.W 2 (x/2X),

u(X) = 0,

r ij= -Dx Dy + 6 iia g (j Dy)+d n. a g Ri Dy)

6. (1/a)g (i Dx) + 6 (1aU ( Dx),
y

1 l,,.,, j = 1,2,...,nY

The elements q,,q 2 ....,q nof q are given by

(4.10) q r.., with k =(j-1)n +i
k x

Our last problem, which is defined below, can be inter-

preted as a finite-difference approximation of a nonlinear O

variational inequality.

Problem C: Find x, w E IR Nsuch that

(4.16) <wlx.> = 0

The problem dimension N, the quantities Dx, Dy and the ma-

trix M are defined as in problem B, given n ,n ,X,Y. The non
N x y

linear term p(x) is a vector in ALR with components p. =xil

i1..N. The vector _q(i, .' is defined by equa-

tion (4.10) where r* =j Dx Dy sin (2'r iDx/X), i=1,2,...,nx

j=1 2,. .,ny*

~ ~ J% ./*/'t' W,
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The numerical results obtained with the previously de-

scribed methods on Problem A, B, C are shown in Tables 1,

2, 3 respectively.

TABLE 1- Results of Problem A

Ti=Ti 0
0 0

n. of total n. n. of total n.
steps of C.G. steps of C.G.
(2.21) steps (2.21) steps

30 10 79 7 210

40 12 121 8 320

50 16 238 8 400

60 14 240 8 480

70 15 38963

80 15 369 9 720

90 19 650 9 8 1 0

100 18 556 10 1000 V

z7%
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TABLE 2 -Results of Problem B

(with X 1.62, y - 3.22, W =0.84)

nI 1T =0
0 0

n. of total n. n. of total n.

n n N steps of C.G. steps of C.G.

X(2.21) steps (2.21)_ steps

6 9 54 13 170 6 324

8 12 96 15 250 8 768
10 15 150 17 483 10 1500

12 18 216 19 746 12 2592

14 21 294 19 867 14 4116

20 30 600 34 2405 21 12600

TABLE 3-Results of Problem C

(with H =5, Y =5)

oj o

n. of total n. n. of total n.
n x n n yN steps of C.G. steps of C.G.

X(2.21) steps (2.21) steps

5 5 25 5 37 4 100

10 10 100 6 99 5 500

15 is 225 8 278 6 1350

20 20 400 10 407 6 2400

25 25 625 10 535 8 5000

30 3C 900 10 893

d5 d -o
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In tables 1, 2, 3 the advantage of using "inexact li-

near algebra" with respect to complete solution of the li-

near system for problems A, B, C is shown, and the advantage

is increasing with the number of unknowns.
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1.- Statement of scientific work done during the reporting

period

We worked on the idea of attempting to adapt the SIGMA

algorithm to work on complementarity problems with many in-

dependent variables. In particular we try to exploit the

following special features of the complementarity problem:

(i) the objective function is a piecewise quadratic

(ii) the objective function value to be found is zero.

The modified version of the SIGMA algorithm is much

more efficient on complementarity problems than the original

one. However it is unable to solve complementarity problems

coming from mathematical physics such as the ones described

in the First Periodic Report with more than fifty or sixty

variables.

Further work is necessary.

2.- Research plans for the immediate future

In the immediate future we plan to pursue the following

objectives:

(i) study the behaviour of our methods on linear and nonli-

near complementarity problems where existence and uni-

queness of solution is not guaranteed

(ii) study the Karmarkar algorithm for linear programming as

a continuation method involving the solution of a Cau-

chy problem for an ordinary differential equation.
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3,- Administrative actions

The following investigators are working on the contract.

Francesco Zirilli
Dipartimento di Matematica "1G. Castelnuovo"
Universit5 di Roma "La Sapienza"
00185 ROMA (Italy)

Filippo Aluffi-Pentini
Dipartimento di Metodi e Modelli
Matematici per l~e Scienze Applicate
Universit5 di Roma "La Sapienza"
00185 ROMA (Italy)

Valerio Parisi
Dipartimento di Fisica
11 Universit5 di Roma (Tor Vergata)
00173 ROMA (Italy)

In May 1987 Francesco Zirilli has presented an invited

talk: "Some physical ideas leading to global optimization

algorithms" to the SIAM Conference on Optimization held in

Houston (USA),'.ay 18 20, 1^037.

After a final revision the two papers describing the

SIGMA package have been accepted f or publication on ACM

Transactions on Mathematical Software.
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§1. Statement of scientific work during the reporting period.

The solution of complementarity problems in many variables

is a difficult computational problem. In order to solve complementarity

problems we have pursued two goals:

(i) construct efficient numerical algorithms

(ii) exploit the new computer architectures and in particular the pa-

rallel machines.

The linear complementarity problem can be written as fol-

lows:

Problem 1. Given A E cnxn and b e IRn find X E I n such that

x > 0

f(x) = Ax + b > 0

<x, f(x)> = 0

n
Let us define the function F: Rn+ IR:

4%

n
F(x) F, F.(x)

"' - i=l 1 -.

where

2
F.(x) x. if x > 0, x. <f,(x)

1- 1 i- 1 I

x + f2 if x, < 0, f.< 0
i i -

f2 if f. < x., f. > 01 I1- 1 1 -

,'
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It is easy to see that F(x) > 0 and that F(x) = 0 if and

only if x is a solution of the linear complementarity problem (Problem

1). Problem 1 is equivalent to the follcwing global optimization pro-

blem:

Problem 2. Find the global minimizer of F, verify that the function

value at the global minimizers of F is zero.

We remark that when the linear complementarity problem has

many solutions the function F will have many global minimizers with

zero function value, when the linear complementarity problem has no

solutions the global minimizers of F will correspond to a positive

function value.

In order to solve Problem 2 we have considered two algo-

rithms:

(1) CSIGMA. A modified version of the SIGMA algorithm that makes use

of a conjugate gradient technique in the time integration step.

This algorithm is stochastic in nature and is explicitely designed

for the search of global minimizers. The initial guess used is

X = 0
-0 -

(2) GRACON. A conjugate gradient minimization technique applied to

the function F from the initial guess x = 0.

The algorithms CSIGMA and GRACON have been tested on three

test problems:

Test Problem 1 is the linear comnplementarity problem in lubrication

theory proposed by Cryer and described in detail in the First Periodic

Report.

Test Problem 2: Let B be a random matrix with gaussian elements of
Tmean zero and variance one and let A = B B. The matrix A is positi-

ve definite (to be precise A could have zero as an eigenvalue with pro

-% Z

: ., a~a ,, ¢ i /i~l i- .% .. ...
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bability zero) so that the corresponding linear complementarity pro-

blem has a unique solution for any b.

I.

Test Problem 3: Let B be as in Test Problem 2 and let A = B. Since

A = B is indefinite in general the corresponding linear complementari-

ty problem may have many solutions or no solution. We choose b such

that the linear complementarity problem has at least one solution.

Moreover we know this solution.

The results obtained with CSIGMA and GRACON are shown in

Table 1 and Table 2.

Table 1 CSIGMA

N Test PROBL I Test PROBL 2 Test PROBL 3

ISUC NFEV ISUC NFEV ISUC NFEV

2 1 11.772 1 8.459 2 18.673

4 1 10.361 1 48.504 2 39.141

8 1 34.826 1 44.795 2 58.175

16 1 68.717 1 51.849 2 86.336

32 1 130.851 1 87.298 2 2.829.481

64 1 156.815 1 330.777 -1

100 1 659. OO9

,"-/
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N Test PROBL I Test PROBL 2 Test PROBL 3

ISUC NFEV ISUC NFEV ISUC NFEV

2 1 15 1 25 2 2 0

4 1 36 1 88 1 65

8 1 77 1 109 1 122

16 1 240 1 198 2 384

32 1 708 1 627 0 479

64 1 3.158 1 1.066 0 635

100 1 7.765 1 1.523 0 1.092

Legenda

N = number of independent variables
ISUC - 1 maximum allowed time has been exceeded

0 failure _

1 success. The solution known a priori has been found

2 success. A solution different from the one known a priori

has been found.

NFEV = number of function evaluations.

'C.

,..

p
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From Table 1 and Table 2 we can see that CSIGMA appears

to be robust but not very efficient while GRACON appears to be effi-

cient but not very robust.

Further res arch is pursued now to build an efficient and

robust algorithm that combines the stochastic character of CSIGMA

(robustness) with the local properties of GRACON (efficiency).

The second goal,that is the possibility of using a SIGMA algo

rithm on a parallel machine,has been studied (see §4 Appendix).

§2. Research plans for the immediate future.

In the immediate future we plan to pursue the following ob-

jectives:

(i) go back to linear and nonlinear complementarity problems that

come from physical problems in order to try to find some more ef

ficient algorithm

(ii) study the special case of linear programming in the context of

continuation methods.

§3. Administrative actions.

In September 1987 Francesco Zirilli has presented the invited

talk: "A parallel algorithm for global optimization inspired by quan-

tum physics" to the conference "Vector and parallel processors for

scientific computation 2" sponsored by the Accademia Nazionale dei Lin

cei and the IBM Italia in Rome.

-.
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The paper:

(1) F. Aluffi-Pentini, V. Parisi, F. Zirilli: "Test probles for global

optimization" has been accepted for publication in The Computer Journal.
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§. Introduction

Let be the N-dimensional real euclidean space, and let

x (XlX 2  xN T e R, the superscript T meaning transpose,N

for x,y c _ = xiyi is the scalar product between x and
i-

y, and Ixl = <x,x>1  is the euclidean norm of x.

In this paper we will consider two problems, that is:

(i) Problem 1. Solving systems of equations. Let f = -IRN be a

given map, solve the system of equations

(1.1) f(x) 0

that is find the points x* ce such that

f(x*) 0

(ii) Problem 2. Global optimization. Let g :N IR be a given func-

tion, find the points x* such that

(1.2) g(x*) " g(x) V x C

It is easy to see that Problem 1 can be reduced to Problem 2, in

fact, x is a solution of f(x) = 0 if and only if g(x) = f(x) 2 = 0

that is x is a global minimizer of g. Moreover, isolated solutions of

the system of equations become non-degenerate minimizers of g. Ishen

Problem 1 is reduced to Problem 2 is known a priori that the minimizers

of g we are interested in correspond to function value g = 0. This

feature is of great value since it gives us the possibility of recognizing

a global minimizer from the function value in a point.

1Y
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In recent years several stochastic algorithm have been proposed

to solve the global optimization problem. We remerber the siimutlated

annealing method of Kirkpatrick, Gelatt and Vecchi [1] and the bayesan

approach of Rinnocy.Kan and coworkers [2] while we have been advocating a

method inspired by statistical and quantum mechanics [3]. Let us remember

briefly the method proposed in [3]; let us consider the Cauchy problem

(1.3) d = -Vg(W + e(t)_.

(1.4) (O) = x.

where w(t) is a standard n-dimensional Wiener process g(x) is the

function whose global minimizers we are interested in that we assume twice

continuously differentiable with only a -finite nunber ot global -, nimizers

and such that:

(1.5) lim g x)
II xll

(1. 6) Jexp(-a g)dx <co V a e FRfO)

Finally, r(t) is a continuous function such that

(1.7) liM E(t) = 0
t- 1

When e(t) = c0  is a constant, equation (1.3) is known as the I

Smoluchowski-Kramers equation [4]. This equation is a singular limit of

the Langevin equation when the inertial terms are neglected. The

Smoluchowski-Kramers equation has been used widely by solid state physicists

and chemists to study physical- phenomena such as atomic migration in crystals

or chemical reactions. In these applications c0 : (2KT/m)
1  where T is

Ij,

.P%
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the absolute temperature, K the Boltzmann constant, m the reduced

mass of the electron and g(x) the potential energy, so that (1.3)

represents diffusion across potential barriers under the stochastic

forces codw. Choosing e = e(t) with lim e(t) = 0 corresponds to
t-"

freezing the system that .is T - 0.

In order to compute the glcbal minimizers of g in (3] we have

proposed to numerically integrate the trajectories of (1.3), (1.4). In

fact, if e(t) goes to zero sufficiently slowly (adiabatic freezing) the

stochastic process (t) solution of (1.3), (1.4) will converge in law

to a random variable concentrated at the global minimizers of g. In

section 2 we discuss briefly the numerical aspects of this method for K

global optimization and in section 3 we present the advantages of a

parallel version of this method.

'
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§2. The numerical integration

In [5], (6] an implementation in a FORIRAN program of the method

introduced in (3] has been realized for serial machines. A numerical

method to obtain the global minimizers of g consists in a numerical in-

tegration procedure for the Cauchy problem (1.3), (1.4). The efficiency

of the numerical method for global optimization obtained depends on the

numerical integration scheme chosen, so that is essential to make a

judicious choice. In making this choice we should consider two facts:

(i) to the purpose of obtaining global minimizers of g only.

asymptotic values of the trajectories are relevant so that

highly accurate schemes are unnecessary.

(ii) in order to give a chance to the random forces to take the

trajectory out of local minimizers many tire integration

steps should be computed so that only methods with a very

cheap step can be considered.

With this in mind in [5], [6] we have chosen the explicit Euler method

with steplength control to guarantee stability. That is, -Kj approxima-

tion of (tK) solves the following difference equation:

(2.1) " - = hlVg( 1 ) + '(tKl)(t-Ul) k = 1,2,

(2.2) EO x

K-1
where t0 = 0 tK I hi, hK > 0 and tK w(tK) K = 0,1,2,... To

i=0
avoid the degredation of the numerical algorithm when g is ill conditicned

the algorithm implemented in [5), [6] provides some form of automatic

rescaling. Since in the right hand side of (2.1) there is the sum of a

'_%A
" . ". , 

'
"'• • • • % '% , " ''w ", . ,% . " * '. . ... -



5

deterministic term hK 1 Vg( _ 1 ) with a stochastic term e(tKl)(K-wK

when they are of the same order of magnitude the effort necessary to compute

accurately Vg (N+l function evaluations if forward finite differences

are used) can be wasted adding e(tK I ) (W- ). Therefore we replace the

gradient Vg with a "random gradient" as follows: let r be an

N-dimensional random vector of length one uniformly distributed on the

N-dimensianal unit sphere. Then for any given (non-random) vector v E RN

its projection along r is such that

(2.3) N E ( <r,v> r = v

where E(') is the expected value. This suggests to replace the gradient

vg( K) with the "random gradient":

(2.4) y(E) = N <r,Vg()> r

we note that only 2 function evaluations (independently of N) are neces-

sary to evaluate y(_) with forward finite differences. Finally, due to

its stochastic nature the initial value problem (1.3), (1.4) has an infinite

number of trajectories even when the initial condition (1.4) is fixed. Since

we are looking for trajectories that diffuse through local minimizers it

is natural to compute several trajectories of (1.3), (1.4) simultaneously

and independently (7 trajectories in the actual implementation of [S], [6]

on a serial machine) and compare them at the end of some suitable

"observation period" to choose which trajectory is worthwhile to continue

to compute and which one should be abandoned on the basis of some heuristic

criterion. This last feature of our algorithm makes him a natural candidate

for parallelization since when more than one processor is available indepen-

dent trajectories can be computed very efficiently on different processors.

U." 'd , . : ',- , ,-., .. , ' ...', . '. .o .. , ,. .. '... .. . -. .-. .., , ... . . . . .
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§3. The parallel algorithm

In the IBM ECSEC Center in Roe a numerical experimentation on a

parallel version of the algorithm for global minimization described in

section 2 has been made. Since the heaviest part of the computation, that -

is the integration of several trajectories of the stochastic initial value

problem (1.3), (1.4), can be done independently and simultaneously by

several processors. The parallel version of the algorithm will have a

very high speed-up factor. The numerical experimentation has been carried

out on the 37 test problems presented in [7] and used to test the serial

algorithm in [5], these problems include the Dixon-Szego functions and the

Levy-?bntalvo functions.

In the following table I for each one of the 37 problems are

reported the following times (in msec) measured by a library routine:

T = execution time of the algorithm executed serially (only one processor

active)

Ti execution time of the processor 1 that we use as master processor so
.5

that Tl is the execution time of the algorithm executed in its

patallel version (7 processors active, 7 trajectories computed)

T2,T3, ... , T7 execution time on the processor 2,3, ... , 7 respectively.

Each processor conputes one of the 7 trajectories. Processor I

besides being the master computes one trajectory.

Finally, the table for each of the 37 problems reports the following

quantities:

."
'- . A.''.-.-."- . '''., S...v""e . - .-- ,- -? S-. . -.- , - -. "- S.--"------"---- .e"- . . "-". . "--'- "-"- -%



7
I}

Sl = Tl + T2 +... + T7 .

S2 = T2 + T3 + ... +T7
S2S6- average execution time for a parallel processor

Tf speed up time. With 7 processors we have TT s 7.

The table reports also the total on all the 37 problems of the previously

described quantities. It can be cbserved that scTe data are inconsistent

(for example TI < T2) but this is due to experimental errors in the

measurement. The total speed-up factor is 6.36, that is 91% of the maxi-

mum speed-up factor attainable 7. As expected the algorithm is very well

suitable for parallelization.

Acknowledgement: One of us (F.Z.) gratefully ackhowledges the hospitality

of Rice University where part of this work was done.
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Table 1-

Pr.-b. T Ti 12 T3 T4 15 i6 T7 91 S2 S216 1/TI Si ll1,

I 29320 6296 5689 5540 4940 5260 5331 5504 M560 32264 5377.33 A. 1.115
2 19942 4864 3276 3562 3652 3499 3238 3558 25649 20785 3464.17 4.10 1.286

3 60619 11314 10182 10432 10001 10057 10189 10116 72291 60977 10162.83 5.36 1.193
4 28422 5790 5036 4813 5014 4879 4928 4839 35299 29509 4918.17 4.91 1.242

5 115435 21728 19483 19356 19474 21289 -19166 21451 140946 119218 19869.67 5.31 1.221
6 37321 7365 6750 6346 6267 6791 6487 6296 46302 38937 6489.50 5.07 1.241

7 176769 27954 28360 28495 28247 27205 29029 29581 196871 168917 28152.83 6.32 1.114

8 443737 71475 70124 69374 70553 69017 70431 69311 490285 414810 69801.67 6.21 1.105

9 417124 69950 65551 64723 65427 64252 66438 65648 461989 392049 65337.83 5.96 1.108

10 26404 4963 4410 4650 4690 4442 4607 4483 32245 27282 4547.00 5.32"1.221 PI
11 32801 6495 5591 5847 5478 5651 5753 5613 40428 33933 5655.50 5.05 1.233

12 40196 7779 6994 6937 6828 7009 6632 6886 49065 41286 6881.00 5.17 1.221

13 25020 4837 4297 4228 4329 4141 4225 £501 30558 25721 4286.U, 5.17 1.221

14 23573 4767 4009 4345 3889 3940 4044 4275 29269 24502 4083.67 4.95 1.242

15 28960 5929 5207 5082 4692 4895 5124 5017 35946 30017 5002.83 4.88 1.241

16 43292 8274 7375 7512 7158 746 7385 7837 53027 44753 7458.83 5.23 1.225

17 33643 6737 6114 5878 5888 5451 5580 5687 41335 34598 5766.33 4.99 1.229

18 331615 48860 49551 51520 51763 50694 49094 49777 351259 302399 50399.83 6.79 1.0s

19 525142 76481 81909 78854 7Q239 77179 80829 78673 552164 475683 79280.50 6.87 1.051
20 494787 76326 74264 72637 73929 74692 71589 74464 517901 441575 73595.83 6.48 1.047

21 9339 15001 14127 13615 15512 14752 1411? 1004 10130 88129 14688.17 6.22 1.106

22 306574 46539 46155 45548 47172 45993 46490 47024 325221 278382 46397.00 6.55 1.061

23 59284 10064 9815 1035 10550 10413 9914 9829 70620 50556 10092.67 5.29 1.191

24 104953 17209 16998 17171 16"35 16987 17274 17253 119427 10218 17036.33 t.10 1..38

161992 '62918 2874 24149 27442 24657 26643 25173 180236 153938 2565c.3j 6.16 1.11Z
2 380008 59569 5597? 5W 8 58539 57088 61172 60866 412234 "5266! 58777.50 6.23 i.'85"+ + " =21+2 7725 78571 4-S440 79740.00 59 . + t
2 525200 75738 21500 82629 t2 71 54178 7440 7 0 I.'
28 2758660 423039 412906 41527: 407223 404738 412375 413209 2895263 2472224 412372.3 1.i0 50

29 161189 7,621 76372 27197 26112 26247 5S-2 2684 15042 52415 :640'. 5
30 342577 55313 " 18 54004 56731 51130 51464 54616 M78576 :23263 537. 0.19 1.11

31 474610 74096 71701 74394 71943 69395 7:573 76523 '2'1I.169 437 59A  72932.3 6.41 1.372

2 315374 49359 48256 47361 50374 48418 4608 47976 '7 :8 28423 48070.53 6.9 1.071
33 300239 46603 44107 45881 45782 44034 44752 46372 317531 270928 45154.67 .44 1.358

4 !2653; 76a12 78414 81315 8004? 75916 79707 81756 553962 477150 79525.00 6.85 1.052

35 6 3595 105471 105039 93340 9366 99325 94265 94747 9,2 5 81. '7513.M0 .

36 26386 5514 4971. 4284 4534 4650 5171 4276 :3400 27386 4647.67 4.7 1.26t"

37 53515 9654 9055 8992 9146 8801 89;9 9294 63i3i 54277 :0417 5.54

OT 10188042 1602390 1570651 1564547 1568754 ....5 1 9 1.41t 4 1561120.00' 6.:1 91..... 7

.4
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